

Neousys Technology Inc.

POC-400 Series

User Manual

Revision 1.2

Table of Contents

Table of	of Contents	2
	Information	
	ct Information	
	ation of Conformity	
	ight Notice	
	Precautions	
	e and Maintenance	
	recautions	
About	This Manual	.10
1	Introduction	
1.1	Specification of POC-400	
1.2	Specification of POC-410	
1.3	Dimension	
1.3.1	Superior View	
1.3.2	Front Panel View	
1.3.3	COM Port Panel View	
1.3.4 1.4	Bottom View	
1 .4 1.4.1	POC-400 Series Mounting Options DIN-Rail Mount Clip	
1.4.1	DIN-Kali Wourit Clip	. 10
2	System Overview	
_	System Overview	
2.1	Unpacking the System	4
2.1	POC-400 Series Front Panel	. เง
2.2.1	USB 3.1 Gen 1 Port	
2.2.1	2.5G Ethernet Port	
2.2.2	System Status LED.	
2.2.3	USB 2.0 Port	
2.2.5	DisplayPort	
2.2.6	CMOS Reset Button	
2.2.7	IEEE 802.3at Power over Ethernet Port (POC-400 only)	.2
2.2.8	3-Pin Terminal Block	
2.3	POC-400 Series COM Port Panel	.29
2.3.1	Power Button	
2.3.2	Reset Button	
2.3.3	COM Port (COM1)	
2.3.4	COM Ports (COM2/ COM3/ COM4)	
2.3.5	3.5mm Microphone-in/ Speaker-out Jack	
2.3.6	SMA Antennae Opening	. 33
2.4	POC-400 Series Internal I/O	. 34
2.4.1	SO-DIMM Memory Socket	
2.4.2	M.2 2230 E Key Socket	
2.4.3	M.2 2280 M Key	
2.5	MezIO [™] Interface	
2.5.1	MezIO [™] Interface Pin Definition	
2.5.2	MezIO [™] Modules for POC-400 Series	.4
_		
3	System Installation	
3.1	Disassembling the System Enclosure	
3.2	Installing Internal Components	
3.2.1	SO-DIMM Installation	
3.2.2	M.2 2280 M Key Module Installation	
3.2.3	M.2 2230 E Key Module Installation	
3.2.4	MezIO™ Module Installation	
3.3	Installing the System Enclosure	.54

3.4	DIN Rail Installation			
3.5	Wall Mount Installation (Optional Accessory)			
3.5.1	Standard Wall Mount (Optional Accessory)			
3.5.2	Vertical Wall Mount (Optional Accessory)	.59		
3.6	Powering On the System			
3.6.1	Powering On Using the Power Button			
3.6.2	Powering On Using An External Non-Latched Switch			
3.6.3	Powering On Using Wake-on-LAN			
3.7	Ignition Power Control (For MezIO-V20 Only)	.65		
3.7.1	Principles of Ignition Power Control	.65		
3.7.2	Additional Features of Ignition Power Control	.66		
3.7.3	Wiring Ignition Signal			
3.7.4	Configure your Windows system			
3.7.5	Operation Modes of Ignition Power Control			
4	BIOS Settings			
4.1	COM1 Port Configuration	.72		
4.2	COM2/ 3/ 4 Port Configuration			
4.3	C-States			
4.4	Power over Ethernet (POC-400 Only)	75		
4.5	Wake-on-LAN			
4.6	Power On after Power Failure			
4.7	Position New Boot Device			
4.8	Watchdog Timer			
5	OS Support and Driver Installation			
5.1	Operating System Compatibility	.79		
5.2	Driver Installation			
5.2.1	Install Drivers Automatically			
5.2.2	Install Drivers Manually			
5.3	Driver for Watchdog Timer and DIO			
	ndix A Using WDT & DIO	.84		
	Function Reference			
	т			
	TT			
	/DT			
	NDT			
StopW	/DT	. 87		
Using	DIO Function (With MezIO-R12 Installed)	. 88		
	for DIO			
	in Definition			
	unction Reference			
InitDIC)	.90		
DIRea	dLine	.90		
	DIReadPort9			
	DOWriteLine9			
	OWritePort 9			
	DOWriteLineChecked			
	itePortChecked			
	unction Reference			
	DICOS			
	erCallbackDICOS			
	ICOS			
	ICOS			
DI ĊO	S Example	.95		

Appendix B PoE On/ Off Control

Table of Contents

PoE On/ Off Control Function Reference	98
GetStatusPoEPort	98
EnablePoEPort	99
DisablePoEPort	100

Legal Information

All Neousys Technology Inc. products shall be subject to the latest Standard Warranty Policy

Neousys Technology Inc. may modify, update or upgrade the software, firmware or any accompanying user documentation without any prior notice. Neousys Technology Inc. will provide access to these new software, firmware or documentation releases from download sections of our website or through our service partners.

Before installing any software, applications or components provided by a third party, customer should ensure that they are compatible and interoperable with Neousys Technology Inc. product by checking in advance with Neousys Technology Inc. Customer is solely responsible for ensuring the compatibility and interoperability of the third party's products. Customer is further solely responsible for ensuring its systems, software, and data are adequately backed up as a precaution against possible failures, alternation, or loss.

For questions in regards to hardware/ software compatibility, customers should contact Neousys Technology Inc. sales representative or technical support.

To the extent permitted by applicable laws, Neousys Technology Inc. shall NOT be responsible for any interoperability or compatibility issues that may arise when (1) products, software, or options not certified and supported; (2) configurations not certified and supported are used; (3) parts intended for one system is installed in another system of different make or model.

Contact Information

Headquarters

Neousys Technology Inc.

(Taipei, Taiwan)

15F, No.868-3, Zhongzheng Rd., Zhonghe Dist., New Taipei City, 23586, Taiwan

Tel: +886-2-2223-6182 Fax: +886-2-2223-6183 Email, Website

Americas

Neousys Technology America Inc.

(Illinois, USA)

3384 Commercial Avenue, Northbrook, IL 60062, USA

Tel: +1-847-656-3298 Email, Website

China

Neousys Technology (China) Ltd.

Room 612, Building 32, Guiping Road 680, Shanghai

Tel: +86-2161155366 Email, Website

Declaration of Conformity

FCC

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

CE

The product(s) described in this manual complies with all applicable European Union (CE) directives if it has a CE marking. For computer systems to remain CE compliant, only CE-compliant parts may be used. Maintaining CE compliance also requires proper cable and cabling techniques.

Copyright Notice

All rights reserved. This publication may not be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written consent of Neousys Technology, Inc.

Disclaimer

This manual is intended to be used as an informative guide only and is subject to change without prior notice. It does not represent commitment from Neousys Technology Inc. Neousys Technology Inc. shall not be liable for any direct, indirect, special, incidental, or consequential damages arising from the use of the product or documentation, nor for any infringement on third party rights.

Patents and Trademarks

Neousys, the Neousys logo, Expansion Cassette, MezIO™ are registered patents and trademarks of Neousys Technology, Inc.

Windows is a registered trademark of Microsoft Corporation.

Intel®, Core™ are registered trademarks of Intel Corporation

NVIDIA®, GeForce® are registered trademarks of NVIDIA Corporation

All other names, brands, products or services are trademarks or registered trademarks of their respective owners.

Safety Precautions

- Read these instructions carefully before you install, operate, or transport the system.
- Install the system or DIN rail associated with, at a sturdy location
- Install the power socket outlet near the system where it is easily accessible
- Secure each system module(s) using its retaining screws
- Place power cords and other connection cables away from foot traffic. Do not place items over power cords and make sure they do not rest against data cables
- Shutdown, disconnect all cables from the system and ground yourself before touching internal modules
- Ensure that the correct power range is being used before powering the device
- Should a module fail, arrange for a replacement as soon as possible to minimize down-time
- By means of a power cord connected to a socket-outlet with earthing connection
- This product is intended to be supplied by a Listed Power Adapter or DC power source, rated 8-35Vdc, 16A, Tma 70 degree C and 5000m altitude during operation. If further assistance is required, please contact Neousys Technology
- If the system is not going to be used for a long time, disconnect it from mains (power socket) to avoid transient over-voltage

Service and Maintenance

- ONLY qualified personnel should service the system
- Shutdown the system, disconnect the power cord and all other connections before servicing the system
- When replacing/ installing additional components (expansion card, memory module, etc.), insert them as gently as possible while assuring proper connector engagement

ESD Precautions

- Handle add-on module, motherboard by their retention screws or the module's frame/ heat sink. Avoid touching the PCB circuit board or add-on module connector pins
- Use a grounded wrist strap and an anti-static work pad to discharge static electricity when installing or maintaining the system
- Avoid dust, debris, carpets, plastic, vinyl and styrofoam in your work area.
- Do not remove any module or component from its anti-static bag before installation

About This Manual

This manual introduces and demonstrates installation procedures of Neousys POC-400 series systems.

Revision History

Version	Date	Description	
1.0	Jul. 2022	Initial release	
1.1	Apr. 2023	Updated OS support information	
1.2	Jul. 2023	Updated CMOS reset button description	

1 Introduction

Neousys Technology POC-400 is an ultra-compact fanless embedded computer for industrial applications. It utilizes the latest Intel® Elkhart Lake platform Atom® x6425E 4-core CPU that can deliver 1.8x and 2x the performance improvement for the CPU and GPU respectively, compared to the previous generation.

In addition to the performance boost, POC-400 features an ultra-compact design measuring just 56 x 108 x 153 mm, which can easily fit into restricted spaces. The system comes with a DIN-rail mounting chassis and an abundance of front-access I/O interfaces. Featuring three 2.5GBASE-T Ethernet ports with IEEE 802.3 PoE+ capability, they provide higher data bandwidth for devices such as NBASE-T cameras and is backward-compatible with 1000/100/10 Mbps Ethernet. It also has two 4K DisplayPort, 2x USB3.1 Gen1, 2x USB 2.0 and COM ports for general industrial applications.

Supporting Neousys' proprietary MezIO™ interface for function expansion, you can add functions such as isolated DIO, RS-232/422/485, ignition control and 4G/5G by installing a MezIO™ module. Moreover, POC-400 comes with an internal M.2 E key socket for a Google TPU or an Intel® Movidius VPU module to transform it into a lightweight AI inference platform at the edge.

Combing the new 10nm Atom[®] CPU, 2.5G
Ethernet ports, PoE+ and ultra-compact enclosure with function expansion capabilities, Neousys' POC-400 is a compact and yet versatile embedded controller that can fuel various industrial applications.

1.1 Specification of POC-400

System Core				
Intel® Elkhart Lake Atom® x6425E quad-core 2.0GHz/3.0GHz 12				
Processor	processor			
Graphics	Integrated Intel® UHD Graphics			
Memory	Up to 32 GB DDR4-3200 SDRAM by one SODIMM socket			
Panel I/O Interfac	ce			
Ethernet	3x 2.5GBASE-T Ethernet ports by Intel® I225 GbE controllers			
PoE+	IEEE 802.3at PoE+ on port #2 and #3			
USB 3.1	2x USB 3.1 Gen1 (5 Gbps) ports			
USB 2.0	2x USB 2.0 ports			
Video Port	2x DisplayPort connector, supporting 4096 x 2160 resolution @ 60Hz			
Serial Port	1x software-programmable RS-232/422/485 ports (COM1)			
	3x 3-wire RS-232 ports (COM2/3/4) or 1x RS-422/485 port (COM2)			
Audio 1x 3.5 mm jack for mic-in and speaker-out				
Storage Interface				
M.2 M key	1x M.2 2280 SATA interface			
Internal Expansion	on Bus			
M.2 E key	1x M.2 2230 E key socket for WiFi, Google TPU or Movidius VPU			
	module			
Expandable I/O	1x MezIO™ expansion port for Neousys MezIO™ modules			
Power Supply				
DC Input	1x 3-pin pluggable terminal block for 8-35V DC input			
Mechanical				
Dimension	56 mm (W) x 108 mm (D) x 153 mm (H)			
Weight	0.96kg			
Mounting	DIN-rail mount (standard) or Wall-mount (optional)			
Environmental				
Operating	-25°C ~ 70°C */**			
Temperature	-20 0 - 10 0 1			
Storage	-40°C ~85°C */**			
Temperature	-40 C ~00 C /			
Humidity	10%~90%, non-condensing			

Vibration	Operating, MIL-STD-810G, Method 514.7, Category 4
Shock	Operating, MIL-STD-810G, Method 516.7, Procedure I
EMC	CE/FCC Class A, according to EN 55032 & EN 55035

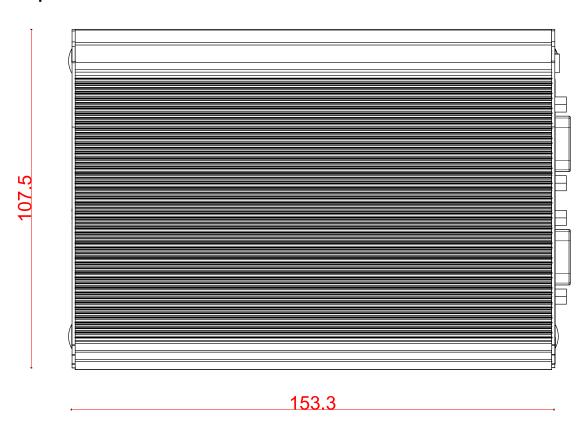
^{*} The 100% CPU/GPU loading for high temperature test is applied using Passmark® BurnInTest™ v8.0. For detail testing criteria, please contact Neousys Technology

^{**} For sub-zero operating temperature, a wide temperature HDD drive or Solid State Disk (SSD) is required.

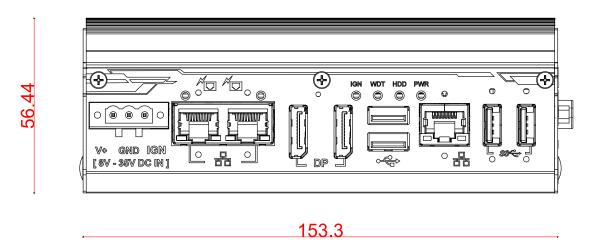
1.2 Specification of POC-410

System Core			
Drosses	Intel® Elkhart Lake Atom® x6425E quad-core 2.0GHz/3.0GHz 12W		
Processor	processor		
Graphics	Integrated Intel® UHD Graphics		
Memory	Up to 32 GB DDR4-3200 SDRAM by one SODIMM socket		
Panel I/O Interfac	ce		
Ethernet	3x 2.5GBASE-T Ethernet ports by Intel® I225 GbE controllers		
USB 3.1	2x USB 3.1 Gen1 (5 Gbps) ports		
USB 2.0	2x USB 2.0 ports		
Video Port	2x DisplayPort connector, supporting 4096 x 2160 resolution @		
	60Hz		
Serial Port	1x software-programmable RS-232/422/485 ports (COM1)		
A 12:	3x 3-wire RS-232 ports (COM2/3/4) or 1x RS-422/485 port (COM2)		
Audio	1x 3.5 mm jack for mic-in and speaker-out		
Storage Interface	9		
M.2 M key	1x M.2 2280 SATA interface		
Internal Expansion	on Bus		
M.2 E key	1x M.2 2230 E key socket for WiFi, Google TPU or Movidius VPU		
	module		
Expandable I/O	1x MezIO™ expansion port for Neousys MezIO™ modules		
Power Supply			
DC Input	1x 3-pin pluggable terminal block for 8-35V DC input		
Mechanical			
Dimension	56 mm (W) x 108 mm (D) x 153 mm (H)		
Weight	0.96kg		
Mounting	DIN-rail mount (standard) or Wall-mount (optional)		
Environmental	Environmental		
Operating	25°C 70°C */**		
Temperature	-25°C ~ 70°C */**		
Storage	4000 0500 */**		
Temperature	-40°C ~85°C */**		
Humidity	10%~90%, non-condensing		
Vibration	Operating, MIL-STD-810G, Method 514.7, Category 4		
Shock	Operating, MIL-STD-810G, Method 516.7, Procedure I		

EMC	CE/FCC Class A, according to EN 55032 & EN 55035
-----	--

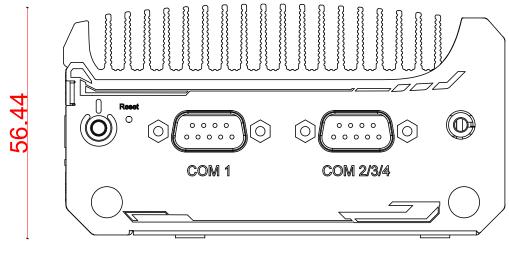

* The 100% CPU/GPU loading for high temperature test is applied using Passmark® BurnInTest™ v8.0. For detail testing criteria, please contact Neousys Technology

^{**} For sub-zero operating temperature, a wide temperature HDD drive or Solid State Disk (SSD) is required.

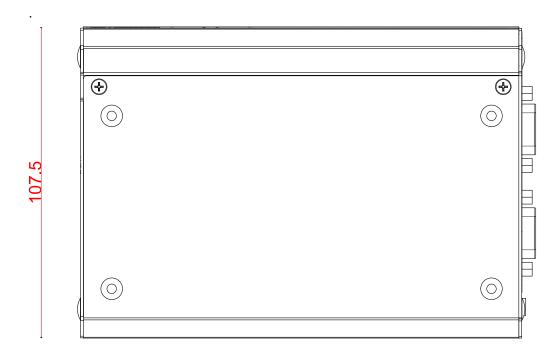


1.3 Dimension

1.3.1 Superior View



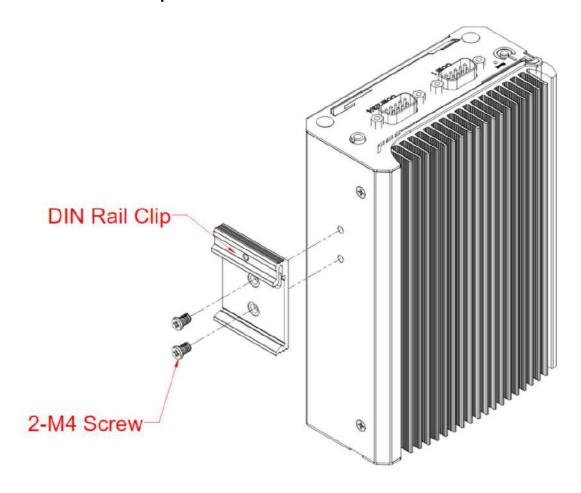
1.3.2 Front Panel View



1.3.3 COM Port Panel View

107.5

1.3.4 Bottom View


153.3

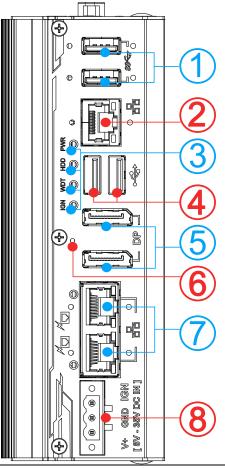
1.4 POC-400 Series Mounting Options

The system comes with various mounting options such as DIN-rail and wall-mount bracket. DIN-rail mount clip is shipped with POC-400 series as standard mounting option.

1.4.1 DIN-Rail Mount Clip

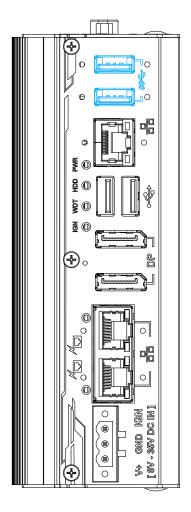
2 System Overview

Upon receiving and unpacking your POC-400 series, please check immediately if the package contains all the items listed in the following table. If any item(s) are missing or damaged, please contact your local dealer or Neousys Technology.


2.1 Unpacking the System

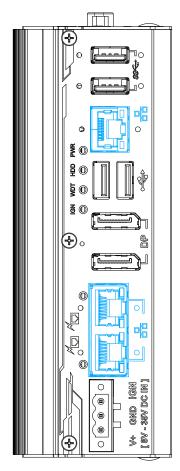
Item	Description	Qty
1	POC-400 ultra-compact fanless computer	
	(Please verify additionally purchased accessories such as memory	
	module, M.2 SSD, TPU, MezIO, etc.)	
2	3-pin pluggable terminal block	1
3	Neousys Drivers & Utilities DVD	1
4	DIN-Rail Mount Clip	1
5	Screw package	1

2.2 POC-400 Series Front Panel


The front panel of POC-400 systems feature rich I/O ports, it has three 2.5G Ethernet ports (two are PoE+ ports for POC-400), two USB3.1 Gen1 ports, two USB2.0 ports, two DisplayPort ports for video output, CMOS reset button and 3-pin terminal block for DC input.

No.	Item	Description	
1	USB 3.1 Gen 1 port	The USB 3.1 Gen1 ports support up to 5Gbit/s data transfer	
'		bandwidth and are backward compatible with USB 2.0/ 1.1/ 1.0.	
2	2.5G Ethernet port	The Ethernet port offers up to 2.5Gb/s transfer bandwidth	
	System status LED	Four system LEDs, Power (PWR), Hard Disk Drive (HDD),	
3		Watchdog Timer (WDT) and Ignition control (IGN)	
4	USB 2.0 port	The USB 2.0 ports offer up to 480Mbit/s bandwidth and are	
4		backward compatible with USB 1.1/ 1.0.	
_	<u>DisplayPort</u>	The dual DisplayPort ports can support up to 4096 x 2160 @	
5		60Hz resolution each.	
6	CMOS reset button	Use this button to manually reset the CMOS	
	2.5G PoE+	POC-400: 2.5Gb/s Power over Ethernet (PoE) port can provide	
7	(POC-400) port/	both data and electric power to devices.	
'	2.5G Ethernet	POC-410: The Ethernet ports offer up to 2.5Gb/s transfer	
	(POC-410)	bandwidth per port.	
8	3-pin terminal block	Compatible with DC power input from 8 to 35V, the terminal	
8	(DC/ ignition input)	block can also be used for ignition signal input.	

2.2.1 USB 3.1 Gen 1 Port



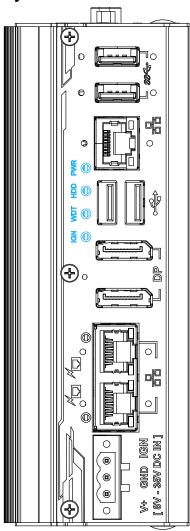
The system offers two USB 3.1 Gen1 (SuperSpeed USB) ports on its front panel. They are implemented by native xHCI (eXtensible Host Controller Interface) controller and are backward compatible with USB 2.0, USB 1.1 and USB 1.0 devices. UEFI USB support is also provided so you can use USB keyboard/mouse in UEFI shell environment

xHCl driver is supported natively in Windows 10, therefore you do not need to install xHCl driver in prior to utilize USB function on POC-400 series.

2.2.2 2.5G Ethernet Port

The system offers three 2.5Gb Ethernet ports using Intel® I225 GbE controller. From top to bottom, they are port #1, #2 and #3. When plugged in and connected via the Ethernet cable, the LEDs on the RJ45 connector indicate connection status and speed.

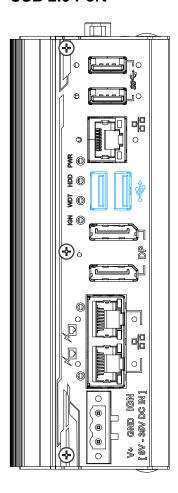
Active/Link LED (Right)


LED Color	Status	Description		Description	
	Off	Ethernet port is disconnected			
Yellow	On	Ethernet port is connected and no data transmission			
	Flashing	Ethernet port is connected and data is transmitting/receiving			

Speed LED (Left)

LED Color	Status	Description
	Off	10 Mbps
Off, Green or	Green	100 Mbps
Orange	Orange	1000 Mbps
	Orange	2500 Mbps

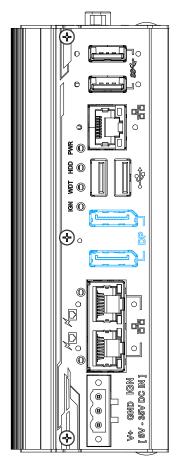
2.2.3 System Status LED



There are four LED indicators on the front panel: PWR, HDD, WDT and IGN. The descriptions of these four LEDs are listed in the following table.

Indicator	Color	Description	
PWR	Green	Power indicator, lid when system is on	
HDD	Red	Hard drive indicator, flashing when SATA HDD is active	
WDT	Yellow	Watchdog timer indicator, flashing when watchdog timer has	
		started	
	Yellow	If ignition option (MezIO-V20) is applied, this LED is used to	
IGN		indicate ignition signal status (lid when IGN signal is	
		applied).	

2.2.4 USB 2.0 Port

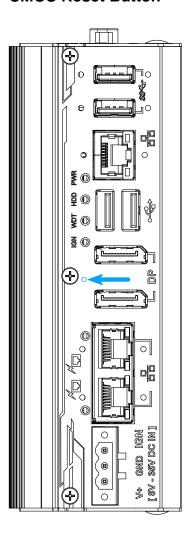


The USB2.0 ports are implemented via native xHCI (eXtensible Host Controller Interface) and are backward compatible with USB 1.1 and USB 1.0 devices. UEFI USB support is also provided so you can use USB keyboard/ mouse in UEFI shell environment.

xHCl driver is supported natively in Windows 10, therefore you do not need to install xHCl driver to utilize USB functions.

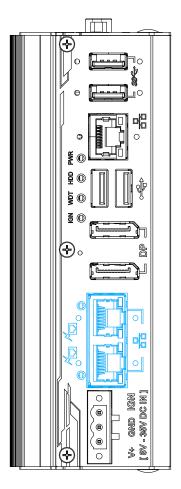
2.2.5 DisplayPort

The system has two DisplayPort (DP) outputs which are digital display interfaces that mainly connect video source and carry audio to a display device. When connecting a DP, it can deliver up to 4K UHD (4096 x 2160 @ 60Hz) in resolution. The system is designed to support passive DP adapter/ cable. You can connect to other display devices using DP-to-HDMI cable or DP-to-DVI cable.


DP-to-HDMI

DP-to-DVI

The system supports dual independent display outputs by connecting display devices DisplayPort connections. To support dual display outputs and achieve best DisplayPort output resolution in Windows, you need to install corresponding graphics drivers. Please refer to section OS Support and Driver Installation for details.

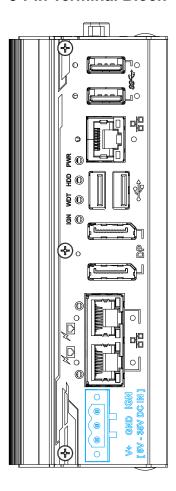

2.2.6 CMOS Reset Button

Indicated by the **blue arrow**, the CMOS Reset button is used to manually reset the motherboard BIOS in case of system halt or malfunction. To avoid unexpected operation, it is purposely placed behind the panel. To reset, please use the tip of a pen, press and hold for at least 5 seconds to reset the BIOS.

2.2.7 IEEE 802.3at Power over Ethernet Port (POC-400 only)

The Gigabit Power over Ethernet (PoE) port supply both power and data on a standard CAT-5/ CAT-6 Ethernet cable. Acting as a PSE (Power Sourcing Equipment), compliant with IEEE 802.3at, each port delivers up to 25W to a Powered Device (PD). PoE automatically detects and determine if the connected device is PoE PD or not before supplying power, making it compatible with standard Ethernet devices as well.

Active/Link LED (Right)

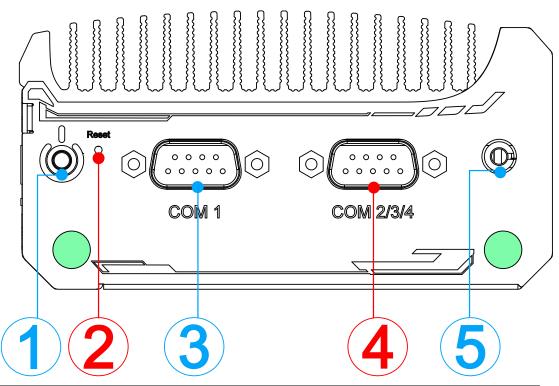

LED Color	Status	Description	
	Off	Ethernet port is disconnected	
Yellow	On	Ethernet port is connected and no data transmission	
	Flashing	Ethernet port is connected and data is transmitting/receiving	

Speed LED (Left)

LED Color	Status	Description
	Off	10 Mbps
Off, Green or	Green	100 Mbps
Orange	Orange	1000 Mbps
	Orange	2500 Mbps

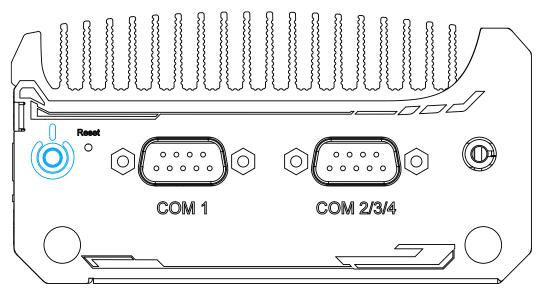
2.2.8 3-Pin Terminal Block

The system accepts a wide range of DC power input from 8 to 35V via a 3-pin pluggable terminal block, which is fit for field usage where DC power is usually provided. The screw clamping mechanism on the terminal block offers connection reliability when wiring DC power.

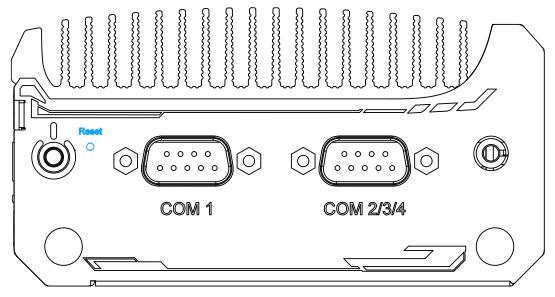

WARNING

Please make sure the voltage of DC power is correct before you connect it to the system. Supplying a voltage over 35V will damage the system.

2.3 POC-400 Series COM Port Panel

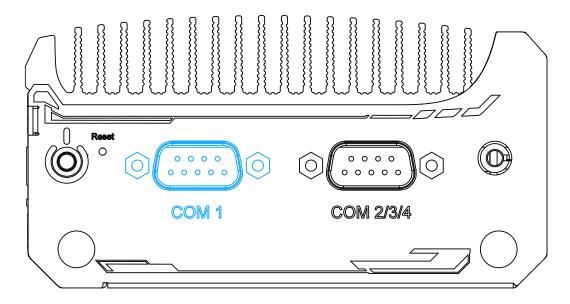

The COM port panel of POC-400 series features additional I/O functions, such as a 3.5mm speaker-out/ microphone-in jack, COM ports and antenna holes for antenna installation.

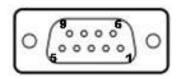
No.	Item	Description	
1	Power button	Use this button to turn on or shutdown the system.	
2	Reset button	Use this button to manually reset the system.	
3	COM port 1	Software programmable RS-232/ 422/ 485 port	
		Can be configured as:	
4	COM port 2/3/4	COM2: single RS-422/ 485 port	
		COM2/ COM3/ COM4: three 3-wire RS-232 ports	
	3.5mm microphone-in/		
5	speaker-out jack	3.5mm jack for speaker-out or microphone-input.	
		Opening reserved for SMA antenna installation	



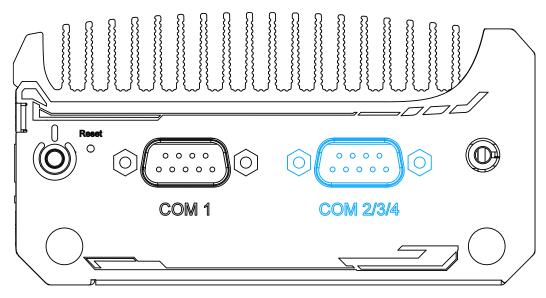
2.3.1 Power Button

The power button is a non-latched switch for ATX mode on/off operation. Press to turn on the system, PWR LED should light up and to turn off, you can either issue a shutdown command in the OS, or just press the power button. In case of system halts, you can press and hold the power button for 5 seconds to force-shutdown the system. Please note that there is a 5 seconds interval between two on/off operations (i.e. once turning off the system, you will need to wait for 5 seconds to initiate another power-on operation).


2.3.2 Reset Button


The reset button is used to manually reset the system in case of system halt or malfunction. To avoid unexpected reset, the button is purposely placed behind the panel. To reset, please use a pin-like object (eg. tip of a pen) to access the reset button.

2.3.3 **COM Port (COM1)**


Implemented using industrial-grade ITE8786 Super IO chip (-40 to 85°C) and provide up to 921600 bps baud rate, COM1 is a software-configurable RS-232/422/485 port via 9-pin D-Sub male connector. The operation mode, slew rate and termination of COM1 can be set in BIOS setup utility. The following table describes the pin definition of COM ports.

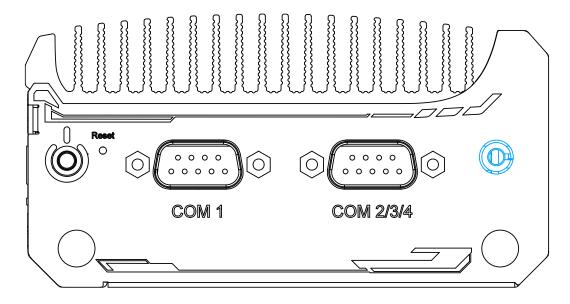
	COM1		
Pin#	RS-232 Mode	RS-422 Mode	RS-485 Mode (Two-wire 485)
1	DCD		
2	RX	422 TXD+	485 TXD+/RXD+
3	TX	422 RXD+	
4	DTR	422 RXD-	
5	GND	GND	GND
6	DSR		
7	RTS		
8	CTS	422 TXD-	485 TXD-/RXD-
9	RI		

2.3.4 COM Ports (COM2/ COM3/ COM4)

Implemented using industrial-grade ITE8786 Super IO chip (-40 to 85°C) and provide up to 921600 bps baud rate, the second D-Sub male connector (COM2/ 3/ 4) can be configured in BIOS as single RS-422/ 485 port (COM2) or three 3-wire RS-232 ports (COM2/COM3/COM4). Please refer to COM2/3/4 Port Configuration for configuring operation mode. An optional 1-to-3 Y-cable is available to connect three RS-232 devices.

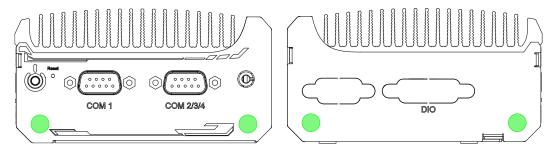
COM2/3/4 Pin

1-to-3 Y-cable


The following table describes the pin definition of the COM port

	3-port RS-232 COM2/ 3/ 4			
Pin#	COM2	COM3	COM4	
1				
2	RX			
3	TX			
4		TX		
5	GND	GND	GND	
6		RX		
7			TX	
8			RX	
9				

	Single port RS-422/ 485		
Pin#	RS-422	RS-485	
1			
2	TxD+	TxD+/	
		RxD+	
3	RxD+		
4	RxD-		
5	GND	GND	
6			
7			
8	TxD-	TxD-/ RxD-	
9			



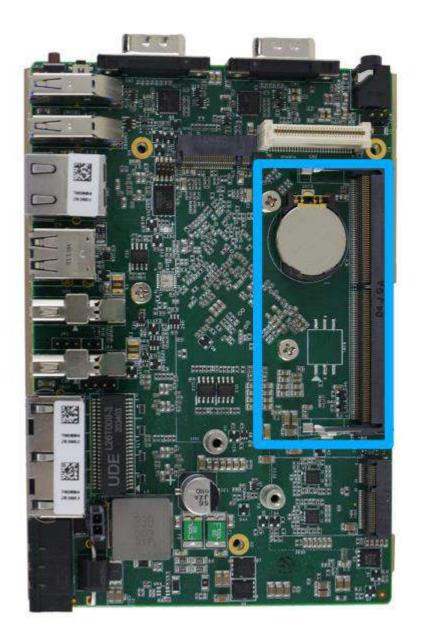
2.3.5 3.5mm Microphone-in/ Speaker-out Jack

There is a single 3.5mm audio jack on the top panel. The port is used for microphone input as well as speaker output. To utilize the audio function in Windows, you need to install corresponding drivers. Please refer to the section, <u>Driver Installation</u>.

2.3.6 SMA Antennae Opening

COM port side

DIO reserved port side

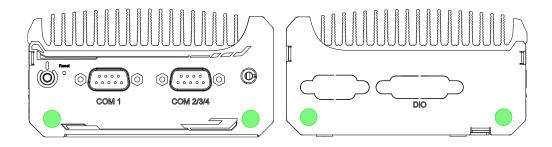

The system offers four SMA antenna openings reserved for SMA antenna installations. Users can take advantage of these four openings when installing M.2 E key module for wireless communication reception such as WiFi 5 or WiFi 6.

2.4 POC-400 Series Internal I/O

The system's internal I/O connectors consist of a SO-DIMM socket, M.2 2280 M key SATA interface port, M.2 E key port and a MezIOTM port for application-oriented expansion purposes.


2.4.1 SO-DIMM Memory Socket

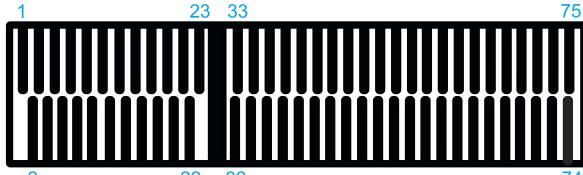
The system has an internal SO-DIMM slot supporting a single DDR4-3200 memory module up to 32GB in capacity.



2.4.2 M.2 2230 E Key Socket

The system has an M.2 2230 E key socket that offers PCIe Gen3 x1 and USB2.0 signal for WiFi module installation.

For SMA antenna installation, there are four dedicated openings located on both sides of the chassis.



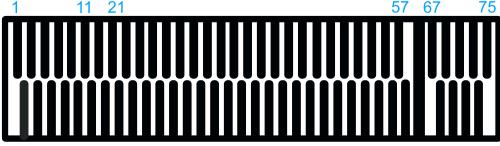
COM port side

DIO reserved port side

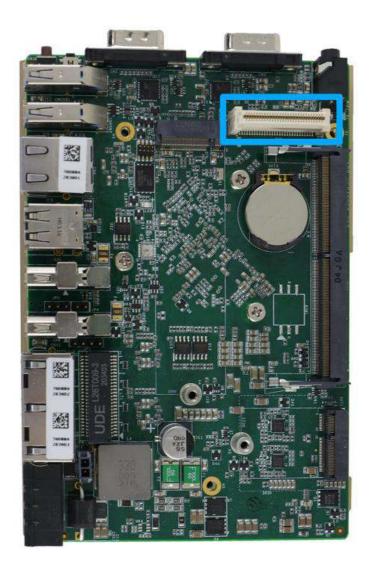
M.2 2230 E Key Pin Definition

2	22 32		
Pin#	Signal	Pin#	Signal
1	GND	2	+3V3
3	USB_D+	4	+3V3
5	USB_D-	6	
7	GND	8	
9		10	-
11		12	
13		14	
15		16	
17		18	GND
19		20	
21	-	22	-
23	-		
Mechar	nical Key		
33	GND	32	
35	PETP0	34	
37	PETN0	36	
39	GND	38	
41	PER P0	40	
43	PER N0	42	
45	GND	44	
47	REFCLK_P0	46	
49	REFCLK_N0	48	
51	GND	50	
53	CLKREQ#	52	PERST#
55		54	
57	GND	56	W_DISABLE#
59		58	
61		60	
63	GND	62	
65		64	
67		66	
69	GND	68	
71		70	
73		72	+3V3
75	GND	74	+3V3

2.4.3 M.2 2280 M Key

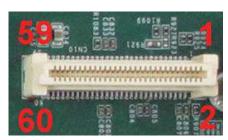

The system has an M.2 2280 slot (SATA signal only) for you to install an M.2 SATA SSD for faster access over traditional hard disk drives.

The M.2 slot is only compatible with SATA signal M.2 SSD only.


M.2 2280 M Key Pin Definition

2	10 20			
Pin#	Signal	Pin#	Signal	
1	GND	2	+3V3	
3	GND	4	+3V3	
5		6	-	
7		8	-	
9	GND	10	DAS/DSS_N	
11		12	+3V3	
13		14	+3V3	
15	GND	16	+3V3	
17		18	+3V3	
19		20	-	
21	GND	22	-	
23		24	-	
25		26	-	
27	GND	28	-	
29		30	-	
31		32	-	
33	GND	34	-	
35		36	DEVSLP	
37		38	-	
39	GND	40	-	
41	SATA-B+	42	-	
43	SATA-B-	44	-	
45	GND	46	-	
47	SATA-A-	48	-	
49	SATA-A+	50	PERST N	
51	GND	52	-	
53		54	-	
55		56	-	
57	GND	58	-	
	Mechanical Key			
67	-	68	SUSCLK	
69	PEDET	70	+3V3	
71	GND	72	+3V3	
73	GND	74	+3V3	
75	GND			

2.5 MezIO[™] Interface


MezIOTM is an innovative interface designed for integrating application-oriented I/O functions into an embedded system. It offers computer signals, power rails and control signals via a high-speed connector. MezIOTM is also mechanically reliable benefited from its 3-point mounted mezzanine structure. A MezIOTM module can leverage these signals to implement comprehensive I/O functions.

POC-400 series incorporates MezIOTM interface and universal mechanical design to accommodate Neousys' standard MezIOTM modules. For customers who want to develop their own MezIOTM module, Neousys provides MezIOTM design documents on a NDA basis. Please contact Neousys for further information.

2.5.1 MezlO[™] Interface Pin Definition

MezIO[™] interface leverages FCI BERGSTAK® board-to-board connector to provide interconnectivity of high-speed signals. The receptacle part on the PCBA is FCI 61082-063402LF while the plug part on the MezIO[™] module is FCI 61083-064402LF. Please refer to the following table for signal definition of its 60-pos connector.

Function Description	Signal	Pin#	Pin#	Signal	Function Description
Reserved	Reserved	1	2	PCIE_TXP_0	PCIe data pair
Reserved	Reserved	3	4	PCIE_TXN_0	PCIe data pair
Reserved	Reserved	5	6	GND	Ground
Reserved	Reserved	7	8	PCIE_RXP_0	PCIe data pair
System S4 signal	SLP_S4#	9	10	PCIE_RXN_0	PCIe data pair
Ground	GND	11	12	CLK100_P_0	PCIe clock pair
Reserved	Reserved	13	14	CLK100_N_0	PCIe clock pair
Ground	GND	15	16	GND	Ground
Reserved	UID_LED	17	18	PCIE_TXP_1	PCIe data pair
Platform reset	PLT_RST#	19	20	PCIE_TXN_1	PCIe data pair
USB data pair	USBP5_N	21	22	PCIE_RXP_1	PCIe data pair
USB data pair	USBP5_P	23	24	PCIE_RXN_1	PCIe data pair
Ground	GND	25	26	GND	Ground
SMB bus	SMB_DATA	27	28	CLK100_P_1	PCIe clock pair
SMB bus	SMB_CLK	29	30	CLK100_N_1	PCIe clock pair
N/C	N/C	31	32	GND	Ground
N/C	N/C	33	34	N/C	N/C
Ground	GND	35	36	N/C	N/C
N/C	N/C	37	38	GND	Ground
N/C	N/C	39	40	N/C	N/C
Power button	PWRBTN#	41	42	N/C	N/C
Reserved	Reserved	43	44	RXD4	SIO COM4
PCH GPIO	GPIO_RISE	45	46	TXD4	SIO COM4
PCH GPIO	GPIO_RISE	47	48	RXD5	SIO COM5
PCH GPIO	GPIO_RISE	49	50	TXD5	SIO COM5
Ground	GND	51	52	GND	Ground
3.3V power	P3V3	53	54	P1V8	1.8V power
3.3V power	P3V3	55	56	GND	Ground
5V power	P5V	57	58	P12V	12V power
5V power	P5V	59	60	P12V	12V power

2.5.2 MezIO[™] Modules for POC-400 Series

Neousys offers MezIO[™] modules to expand I/O functions for Neousys systems. With the addition of a MezIO[™] module into your system, it offers extra RS-232/422/485 ports, isolated digital I/O, 2.5" HDD/ SSD accommodation, USB or ignition power control.

Model	Description	Product Photo
MezIO-R11	SATA port	
MezIO-R12	SATA port + 4x isolated DI/ 4x isolated DO	
MezIO-C180-50	4-port RS-232/422/485 + 4-port RS-232	
MezIO-C181-50	4-port RS-232/422/485 + 4-port RS-422/485	· · · · · · · · · · · · · · · · · · ·
MezIO-D220-50*	8-CH isolated DI + 8-CH isolated DO	
MezIO-D230-50*	16-CH isolated DI + 16-CH isolated DO	
MeziO-V20	16-mode ignition power control	
MezIO-U4-30	4x USB3.1 Gen1 ports	

3 System Installation

Before disassembling the system enclosure and installing components and modules, please make sure you have done the following:

- It is recommended that only qualified service personnel should install and service this product to avoid injury or damage to the system.
- Please observe all ESD procedures at all times to avoid damaging the equipment.
- Before disassembling your system, please make sure the system has powered
 off, all cables and antennae (power, video, data, etc.) are disconnected.
- Place the system on a flat and sturdy surface (remove from mounts or out of server cabinets) before proceeding with the installation/ replacement procedure.

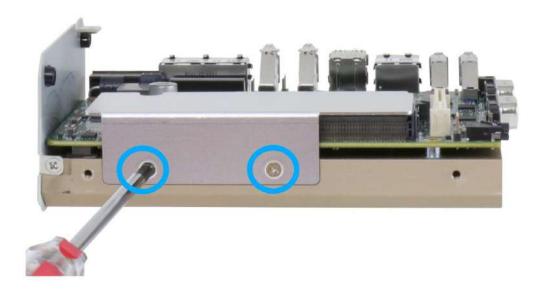
3.1 Disassembling the System Enclosure

To install necessary components such as memory module, M.2 modules or MezIOTM module, you need to disassemble the POC-400 system enclosure:

 To disassemble POC-400, unfasten the screws shown in the following illustrations.

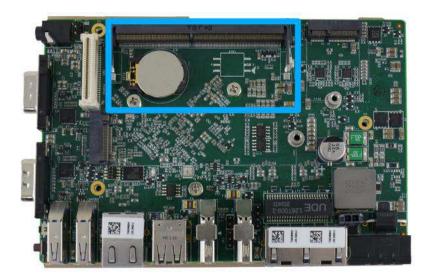
Rear panel

2. Unfasten the screws at the bottom of the enclosure.



3. Gently slide the enclosure open.

4. Remove the SO-DIMM module heatsink by unscrewing the screws indicated to gain access to internal expansion slots.

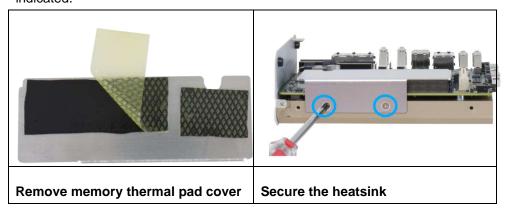


3.2 Installing Internal Components

3.2.1 SO-DIMM Installation

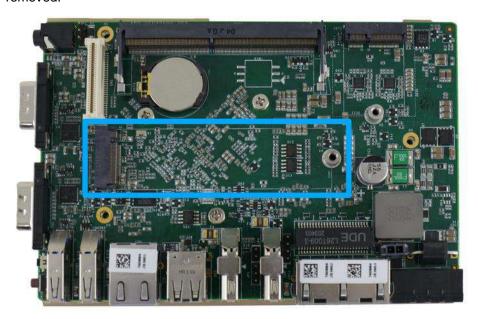
There is one SO-DIMM memory slot on POC-400 series motherboard. Please follow the procedures below to install the memory module.

- 1. Disassemble the system enclosure
- The SO-DIMM slot can be located once the enclosure and heatsink have been removed.



3. **To install**, insert the gold finger end of the SO-DIMM on a 45 degree angle into the slot and gently push the SO-DIMM down until it clips-in.

4. Remove the memory thermal pad cover and secure the heatsink with the screws indicated.


5. Reinstall the system enclosure.

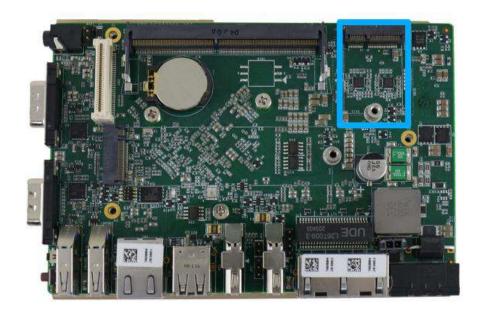
3.2.2 M.2 2280 M Key Module Installation

There is an M.2 2280 M key module expansion slot on POC-400 series motherboard. Please follow the procedures below for installation.

- 1. <u>Disassemble the system enclosure</u>.
- 2. The M.2 2280 M key expansion can be located once the enclosure has been removed.

3. Insert the M.2 2280 module on a 45 degree angle.

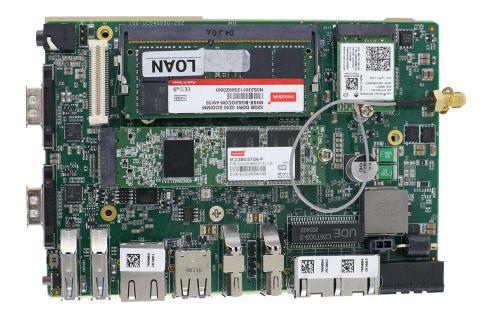
4. Gently press the card down and secure with a screw.


5. Reinstall the system enclosure.

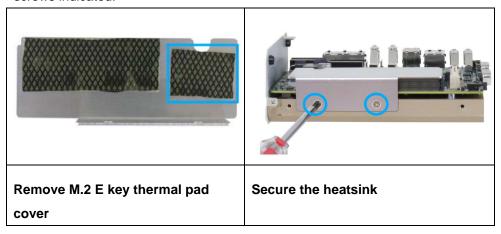
3.2.3 M.2 2230 E Key Module Installation

There is an M.2 E key expansion slot on POC-400 series motherboard for WiFi, Google TPU or Movidius VPU module installation. Please follow the procedures below for installation.

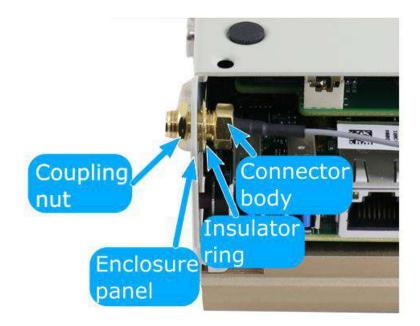
- 1. <u>Disassemble the system enclosure</u>.
- 2. The M.2 E key slot can be located once the enclosure and the heatsink has been removed.



3. **To install**, insert M.2 E key module's gold finger on a 45 degree angle into the socket, gently press the module down and secure it with a screw.



4. If you are installing a WiFi module, you will need to install the module's antennae (please refer to the module's user manual on antennae cable connection).

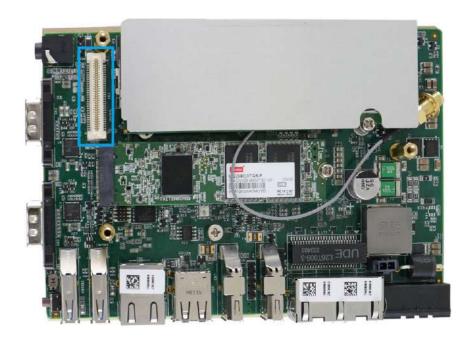

5. Remove the M.2 E key thermal pad cover and secure the heatsink with the screws indicated.

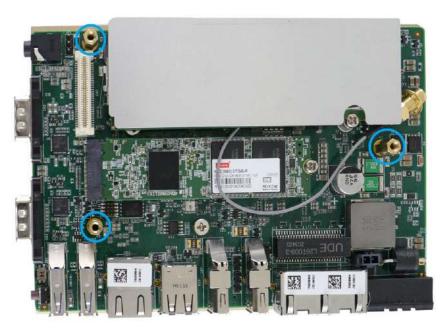
6. Remove the Antennae cover from the enclosure.

7. Please refer to the illustration below to secure the SMA antenna.

Secure antenna body on enclosure

Install the external antenna


8. Reinstall the system enclosure and attach the external antennae to complete the installation.


3.2.4 MezlO™ Module Installation

The system comes with a MezIOTM module expansion slot. For specific MezIOTM module I/ O functionalities, please refer to the MezIOTM Module section. For installation, please refer to the following procedure.

- 1. <u>Disassemble the system enclosure</u>.
- The MezIO[™] module expansion slot can be located once the enclosure has been removed.

 The stand-off hex bolts are shipped with MezIO module. POC-400 comes with M3, P-head screws, we need to remove P-head screws and replace them with stand-off bolts

4. To install, match the three (3) screw holes to the standoffs and the MezIO[™] port, gently lower the module onto the PCBA. The MezIO[™] port should engage if the three (3) standoffs and screw holes meet. Then using the three (3) screws supplied, secure the module by fastening a screw on each standoff.

 If you are installing a new MezIO[™] module into your system, you may need to remove the punch-out plate depending on your MezIO expansion needs.

6. Reinstall the system enclosure.

3.3 Installing the System Enclosure

 To reinstall the system enclosure, gently slide the L-shaped enclosure back in place making sure the screw hole on the hinge sits on the inside.

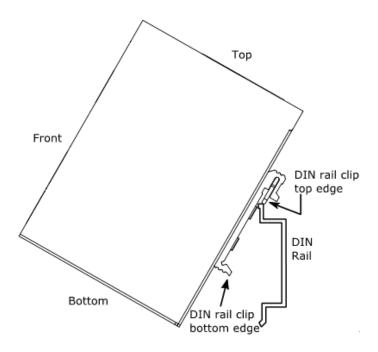
Place enclosure back in-place Make sure hinge sits on the inside

2. Complete installing the system enclosure by fastening the screws indicated below.

Rear panel

Bottom of the enclosure

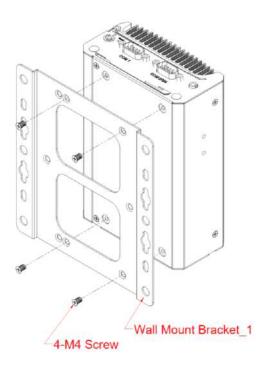
3.4 DIN Rail Installation


The DIN rail is easy to install and it is a convenient way to position the system. The DIN rail has been proven to be most beneficial in the industrial environment where space is limited. The mount plate comes with two M4 screws. Please refer to the illustrations below to install the DIN clip/ rail.

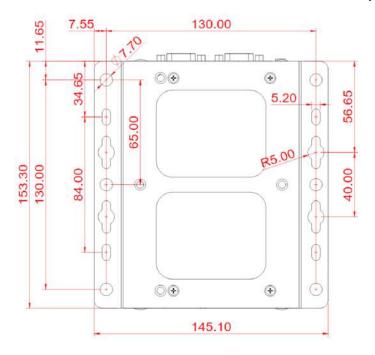
 To install, secure the DIN rail clip onto the rear of the system enclosure using the M4 screws provided.

2. To install the mount plate onto the DIN rail, you must come over the top of the DIN rail, tilting downwards, overlap the top clip edge of the mount plate onto the DIN rail first, then firmly press the bottom-front of the enclosure to clip the bottom edge of the mount plate.

3. Confirm the mount plate has indeed clipped onto the DIN rail for proper fit to complete the installation.

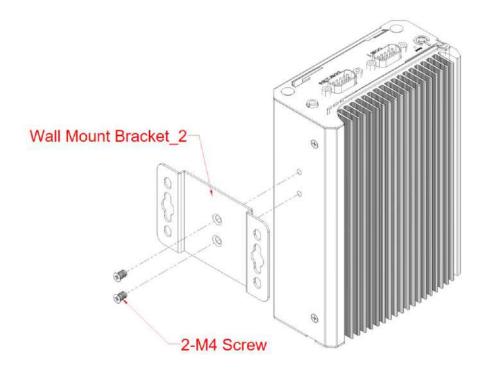

3.5 Wall Mount Installation (Optional Accessory)

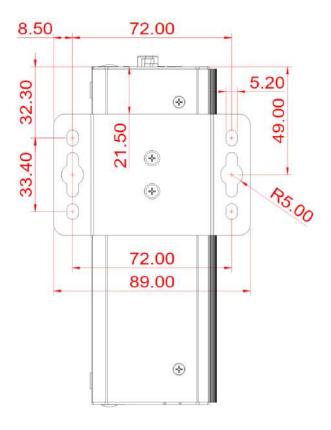
3.5.1 Standard Wall Mount (Optional Accessory)


The optional wall mount bracket allows the system to be mounted horizontally.

Please refer to the following installation procedure to install the wall mount.

 To install, secure the wall mount bracket to the bottom of the system enclosure using the M4 screws provided.


2. Dimension illustration of the installed wall mount bracket for your reference.

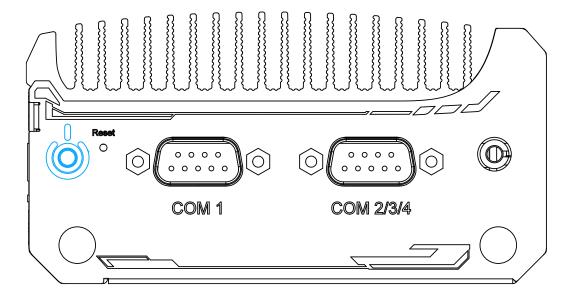


3.5.2 Vertical Wall Mount (Optional Accessory)

 To install, secure the wall mount bracket to the rear side panel of the system enclosure using the M4 screws provided.

2. Dimension illustration of the install vertical wall mount bracket for you reference.

3.6 Powering On the System


There are five methods to power on the system

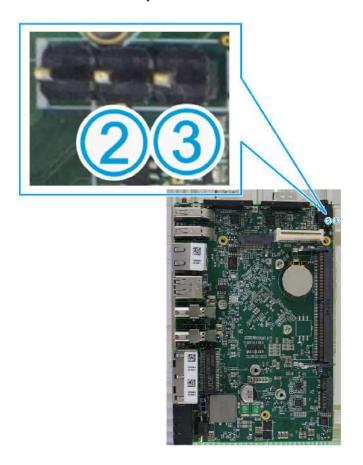
- Pressing the power button
- Via an external non-latched switch
- Sending a LAN packet via Ethernet (Wake-on-LAN)
- Using the ignition signal input (if MezIO-V20 is installed)

We will describe the processes and actions involved for the first four methods in this section and the ignition signal input method will be described in section 3.7.

3.6.1 Powering On Using the Power Button

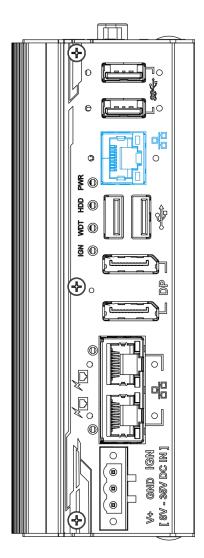
This is the simplest way to turn on your system. The power button on the front panel is a non-latched switch and behaves as the ATX-mode on/off control. With DC power connected, pushing the power button will turn on the system and the PWR LED indicator will light up. Pushing the button when system is on will turn off the system. If your operating system supports ATX power mode (i.e. Microsoft Windows or Linux), pushing the power button while the system is in operation will result in a pre-defined system behavior, such as shutdown or hibernation.

3.6.2 Powering On Using An External Non-Latched Switch


For an application which places the system inside a cabinet, it's useful to control powering on/off the system using an external switch. The system provides an on-board connector for connecting a latched/ non-latched switch and behaving either AT-mode or ATX-mode power on/off control.

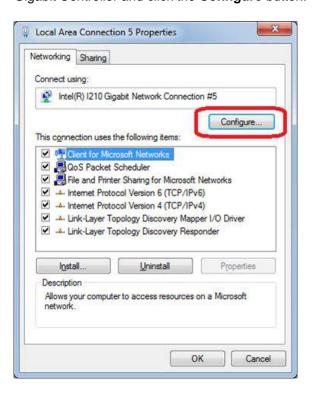
When using the ATX-mode on/ off control, you need a non-latch switch. The external non-latched switch acts exactly the same as the power button on the front panel Please follow the steps below to install an external non-latch switch.

1. Prepare a non-latched switch with a 2-pin, 2.0mm pitch connector

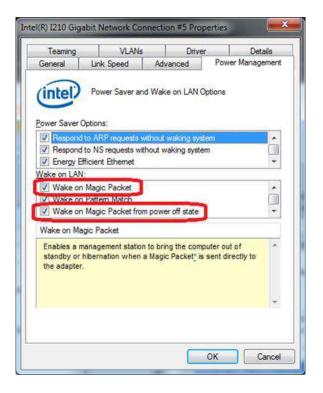

Connect the non-latched switch to the pin#2 and pin#3 of the on-board 1x3 pins, 2.0mm pitch pin header (polarity is negligible). Press the button on the switch to turn on the system.

3.6.3 Powering On Using Wake-on-LAN

Wake-on-LAN (WOL) is a mechanism to wake up a computer system from a S3 (standby), S4 (Hibernate) or S5 (system off with standby power) state via issuing Subnet Directed Broadcasts (SDB) or a magic packet. The system implements the Wake-on-LAN function for the GbE port #1 shown below.



To enable WOL function and power on your system, please follow the steps below.


- 1. Press F2 when the system boots up to enter BIOS.
- Enter the [Power] menu. And configure the [Wake On LAN] option as [Enabled]. Please refer to the <u>Wake-on-LAN</u> section.

 In Windows systems, identify the Local Area Connection of the corresponding Gigabit Controller and click the **Configure** button.

 Click the **Power Management** tag, and check the following two options accordingly

Wake on Magic Packet

The system can wake from S3 or S4 state when receiving a magic packet. The magic packet is a broadcast frame containing anywhere within its payload 6 bytes of all 255 (FF FF FF FF FF in hexadecimal), followed by sixteen repetitions of the target computer's 48-bit MAC address.

For example, NIC's 48-bit MAC Address is 78h D0h 04h 0Ah 0Bh 0Ch

DESTINATION SOURCE MISC

FF FF FF FF FF

78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

78 D0 04 0A 0B 0C 78 D0 04 0A 0B 0C

MISC CRC

There are some free tools available on Internet that can be used to send a magic packet. Please refer to the following link to understand more about Magic Packet.

http://en.wikipedia.org/wiki/Wake-on-LAN

Wake on Magic Packet from power off state

When checking this option, the system can wake from S5 (system off with standby power) state when receiving a magic packet.

3.7 Ignition Power Control (For MezIO-V20 Only)

The ignition power control module for in-vehicle applications is a MCU-based implementation that monitors the ignition signal and reacts to turn on/off the system according to predefined on/off delay. Its built-in algorithm supports other features such as ultra-low power standby, battery-low protection, system hard-off, etc. In this section, we'll illustrate the principle of ignition power control and operation modes.

3.7.1 Principles of Ignition Power Control

The basic concept of ignition power control module is to control the timing correlation between ignition signal and system power status. A typical timing correlation is described in following diagram.

- When DC power is supplied to the system, MCU starts to periodically detect ignition signal. Note that only MCU is working at this moment and the overall power consumption is less than 2 mW.
- 2. Ignition signal is active (both 12VDC and 24VDC ignition signals are accepted).
- 3. MCU starts to count a pre-defined power-on delay.
- Once power-on delay expired, MCU turns on necessary standby power for the system (3.3VSB & 5VSB).
- 5. A PWRBTN# pulse is then issued to turn on the system (equivalent to one pressing the power button on the front panel).
- 6. The system is booting and becomes operational.
- 7. After a period of time, the ignition signal becomes inactive.
- 8. MCU starts to count a pre-defined power-off delay.
- 9. Once power-off delay expired, another PWRBTN# pulse is issued to perform a soft-off for the system (ex. a normal shutdown process for Windows system).
- 10. The system is completely shut down.
- 11.As MCU detects system is off, it turns off the standby power for the system, and operates in low power mode again (< 2mW power consumption).

3.7.2 Additional Features of Ignition Power Control

In addition to the typical timing correlation, the ignition power control module offers additional features to provide additional reliability for in-vehicle applications.

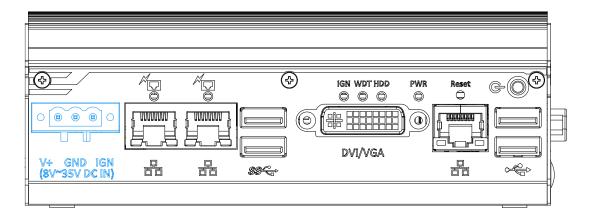
Low battery detection

The ignition power control module continuously monitors the voltage of DC input when the system is operational. If input voltage is less than 9V (for 12VDC input) or less than 18V (for 24VDC input) over a 60-second duration, it will shut down the system automatically.

Guarded power-on/ power-off delay duration

If ignition signal goes inactive during the power-on delay duration, the ignition power control module will cancel the power-on delay process and go back to idle status. Likewise if ignition signal goes active during the power-off delay duration, the ignition power control module will cancel the power-off delay process and keep the system running.

System hard-off


In some cases, system may fail to shutdown via a soft-off operation due to system/ application halts. The ignition power control module offers a mechanism called "hard-off" to handle this unexpected condition. By detecting the system status, it can determine whether the system is shutting down normally. If not, the ignition power control module will force cut-off the system power 10 minutes after the power-off delay duration.

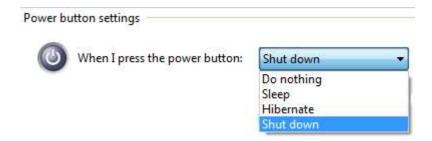
Smart off-delay

The ignition power control module offers two modes (mode 6 & mode 7) which have very long power-off delay duration for applications require additional off-line time to process after the vehicle has stopped. In these two modes, the ignition power control module will automatically detect the system status during the power-off delay duration. If the system has shutdown (by the application software) prior to power-off delay expiring, it will cut off the system power immediately to prevent further battery consumption.

3.7.3 Wiring Ignition Signal

To have ignition power control for in-vehicle usage, you need to supply IGN signal to the system. The IGN input is located on the 3-pin pluggable terminal block (shared with DC power input). For in-vehicle ignition control wiring, please do the following:

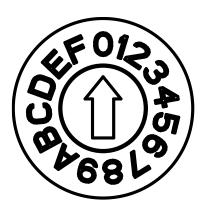
- 1. Connect car Battery+ line (12V for sedan, 24V for bus/truck) to V+.
- 2. Connect car Batter-/ GND line to GND.
- 3. Connect ACC line to IGN.


WARNING

Please make sure your DC power source and IGN signal share the same ground. IGN input accepts 8~35VDC. Supply a voltage higher than 35VDC may damage the system.

3.7.4 Configure your Windows system

When applying ignition power control to your system, please make sure you've configured your Windows system to initiate a shutdown process when pressing the power button. By default, Windows 7/ 8/ 10 goes to sleep (S3) mode when power button is pressed. As sleep (S3) is not a complete shutdown behavior, the ignition control function does not recognize the finish of a normal shut down process and thus users will encounter a system hard-off (power cut-off after 10 minutes). Please configure "When I press the power button" to "Shut down" in your Windows system settings.



3.7.5 Operation Modes of Ignition Power Control

You can use the rotary switch to configure the operation mode. The system offers 16 (0~15) operation modes with different power-on/power-off delay configurations.

The ignition control module is also BIOS-configurable. When rotary switch is set to mode 15 (0xF), the ignition power control is set to executed according to parameters configured in BIOS setup menu, which allows richer combination of power-on/power-off delay and more detailed control parameters.

Ignition rotary switch

Mode 0

Mode 0 is the ATX mode without power-on and power-off delay. User can only use the power button on the front panel to turn on or turn off the system.

Mode	Power-on Delay	Power-off Delay	Hard-off Timeout
0	N/A	N/A	N/A

Mode 1

Mode 1 is AT mode without power-on and power-off delay. The system automatically turns on when DC power is applied. A retry mechanism is designed to repeat the power-on cycle if the system fails to boot up.

Mode	Power-on Delay	Power-off Delay	Hard-off Timeout
1	N/A	N/A	N/A

Mode 2

Mode 2 is designed to have a very minor power on/ off delay of 160ms for applications that requires the system to start up almost at the same as the rest of the equipment it is working in collaboration with.

Mode	Power-on Delay	Power-off Delay	Hard-off Timeout
2	160ms	160ms	10 minutes

● Mode 3 ~ Mode 12

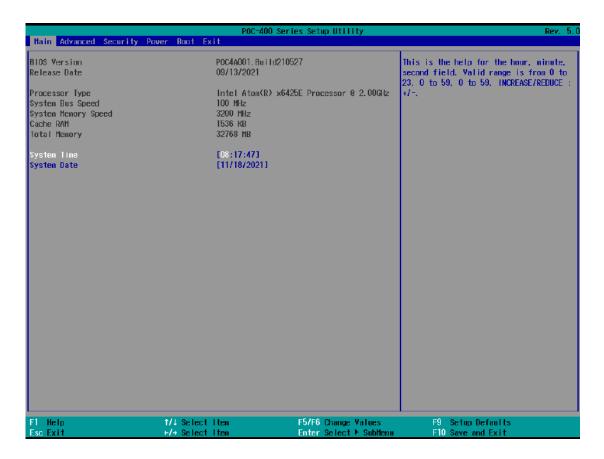
Mode 3 ~ Mode 12 have various power-on delay and power-off delay. Each mode supports a hard-off timeout of 10 minutes.

Mode	Power-on Delay	Power-off Delay	Hard-off Timeout
3	10 seconds	10 seconds	10 minutes
4	10 seconds	1 minute	10 minutes
5	10 seconds	5 minutes	10 minutes
6	30 seconds	1 minute	10 minutes
7	30 seconds	5 minutes	10 minutes
8	30 seconds	10 minutes	10 minutes
9	3 minutes	1 minute	10 minutes
10 (A)	3 minutes	10 minutes	10 minutes
11 (B)	3 minutes	30 minutes	10 minutes
12 (C)	10 minutes	30 minutes	10 minutes

Mode 13 (D) / Mode 14 (E)

Mode 13 and Mode 14 are ignition power control modes with very long power-off delay. Both modes support the feature of "smart off-delay", which automatically detect system status during power-off delay duration and cut off system power if system is off in prior to power-off delay expired.

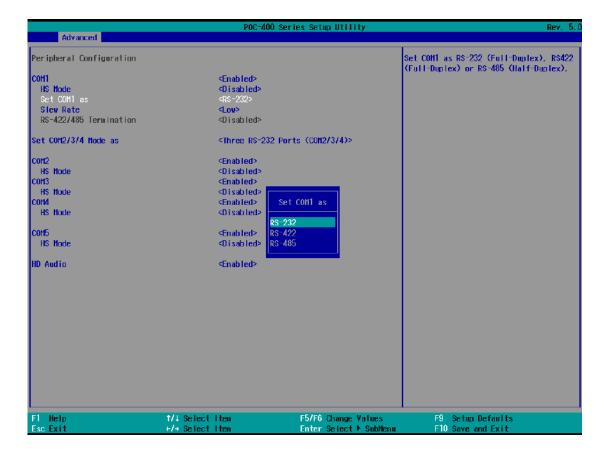
Mode	Power-on Delay	Power-off Delay	Hard-off Timeout
13 (D)	30 seconds	2 hours	10 minutes
14 (E)	3 minutes	2 hours	10 minutes


Mode 15 (F)

Mode 15 is reserved for manufacturer purposes.

4 BIOS Settings

The system is shipped with factory-default BIOS settings optimized for best performance and compatibility. In this section, we'll illustrate some BIOS settings you may need to set or change prior to operating system installation. Please always make sure you understand the effect of change before you proceed with any changes. If you are unsure of the function you are changing, it is recommended to change one setting at a time to see its effect(s).

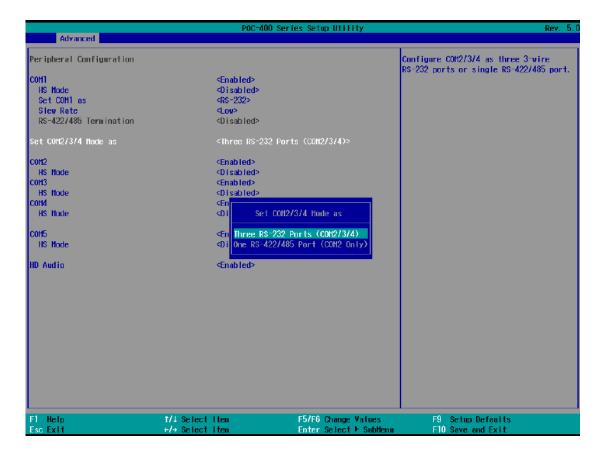


4.1 COM1 Port Configuration

The system's <u>COM1 port</u> supports RS-232 (full-duplex), RS-422 (full-duplex) and RS-485 (half-duplex) mode. You can set the COM1 operating mode via BIOS settings. Another option in BIOS called "*Slew Rate*" defines how sharp the rising/falling edge is for the output signal of COM1. For long-distance RS-422/485 transmission, you may set the "*Slew Rate*" option as "High" to improve signal quality. For RS-422/485 communication, the "*RS-422/485 Termination*" option determines whether to enable/disable internal termination of RS-422/485 transceiver according to your wiring configuration (e.g. with or without external termination).

To set COM1 operating mode:

- 1. Press **F2** when the system boots up to enter the BIOS setup utility.
- Go to [Advanced] → [Peripheral Configuration].
- 3. Set the [Set COM1 Mode as] option to the desired mode.
- 4. Once set, press **F10** to save setting and exit.

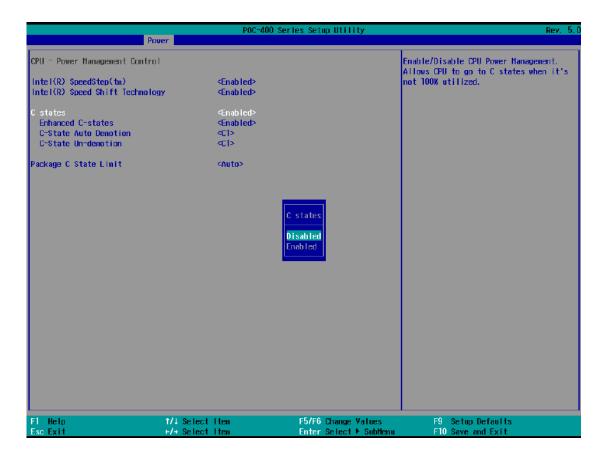


4.2 COM2/ 3/ 4 Port Configuration

The system's COM2/ 3/4 ports support RS-232 (full-duplex) while COM2 also supports RS-422 (full-duplex) and RS-485 (half-duplex) mode. The operating mode can be configured via the BIOS. Another option in BIOS called "Slew Rate" defines how sharp the rising/falling edge is for the output signal. For long-distance RS-422/485 transmission, you may set the "Slew Rate" option as "High" to improve signal quality. For RS-422/485 communication, the "RS-422/485 Termination" option determines whether to enable/disable internal termination of RS-422/485 transceiver according to your wiring configuration (e.g. with or without external termination).

To set COM2/3/4 operating mode:

- 1. Press **F2** when the system boots up to enter the BIOS setup utility.
- Go to [Advanced] → [Peripheral Configuration].
- 3. Set the [Set COM2/ 3/ 4 Mode as] option to the desired mode.
- 4. Once set, press **F10** to save setting and exit.



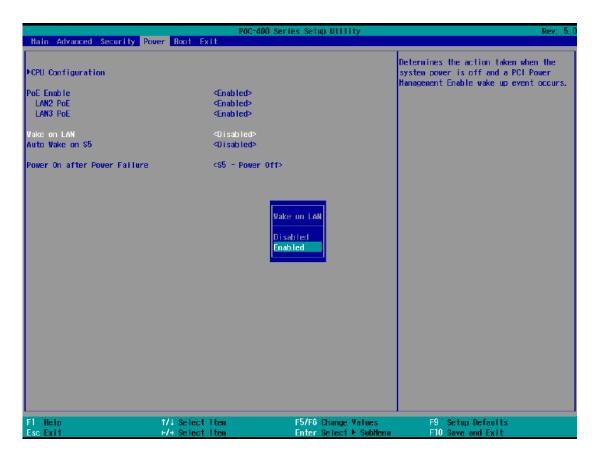
4.3 C-States

C-States is a power-saving technique implemented in modern Intel processors. It shuts down the clock signals and power for idle logic units inside the CPU to save the energy consumed. The trade-off, however, is a longer latency for CPU to wake up and be 100% operational. Depending on your application, you can configure these options to have higher performance (disable "C-States") or lower power-consumption (enable "C-States").

To set C-States and Enhanced C-States:

- 1. Press **F2** when the system boots up to enter the BIOS setup utility.
- 2. Go to [Power] → [CPU Configuration] → [CPU Power Management]
- 3. Enable/disable the [C-States] option according to your application.
- 4. Once set, press F10 to save setting and exit.

4.4 Power over Ethernet (POC-400 Only)


The Power over Ethernet (PoE) functionality is available on ports 1 and 2, and it allows for the transmission of data and power delivery while utilizing a single Cat5 and higher grade Ethernet cable.

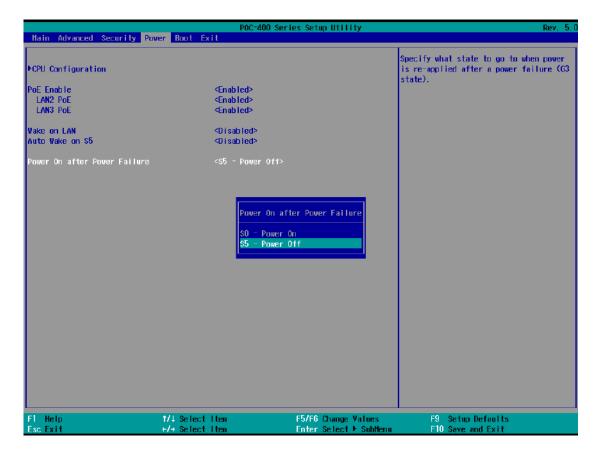
4.5 Wake-on-LAN

Wake-on-LAN (WOL) is a mechanism which allows you to turn on your system via Ethernet connection. To utilize Wake-on-LAN function, you have to enable this option first in BIOS settings. Please refer to Powering on via Wake-on-LAN function.

To enable/disable "Wake on LAN" option:

- 1. Press **F2** when the system boots up to enter the BIOS setup utility.
- 2. Go to [Power].
- 3. You may enable/disable the [Wake on LAN] option.
- 4. Once set, press **F10** to save setting and exit.

4.6 Power On after Power Failure

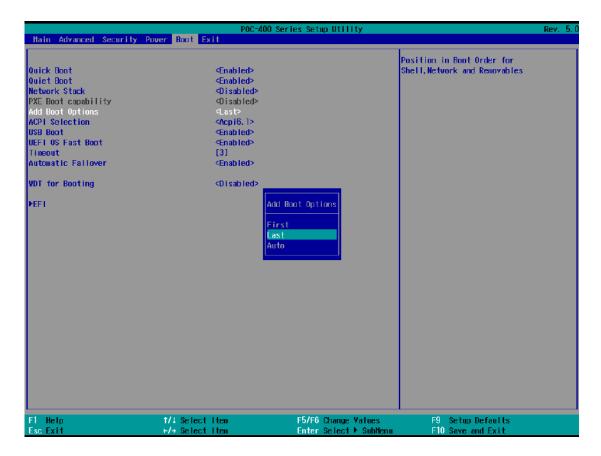

This option defines the system's behavior when DC power is supplied.

Value	Description
S0 – Power On	System is powered on when DC power is supplied.
S5 – Power Off	System is kept in off state when DC power is supplied.

When you want to use the AT-mode remote on/off control function, you have to set this option to "S0 – Power On". Please refer to <u>section 3.7.2</u> for instructions of using AT-mode remote on/off control function.

To set "Power On after Power Failure" option:

- 1. Press **F2** when the system boots up to enter the BIOS setup utility.
- 2. Go to [Power].
- 3. Set the [Power On after Power Failure] option to the desired setting.
- 4. Once set, press **F10** to save setting and exit.

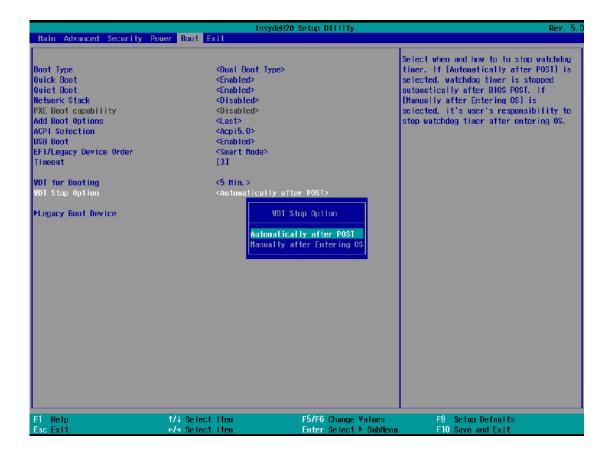


4.7 Position New Boot Device

The "Add Boot Options" allow you to determine whether a newly added device (eg. USB flash disk) is to boot as the first device to boot or the last in the boot sequence.

To set the newly-installed boot device as the first or last boot device:

- 1. Press **F2** when the system boots up to enter the BIOS setup utility.
- 2. Go to [Boot] > [Add Boot Options] menu.
- 3. Select [First] or [Last] for your newly-added boot device and press Enter.
- 4. Once set, press **F10** to save setting and exit.



4.8 Watchdog Timer

The watchdog timer secures the boot process by means of a timer. Once the timer expires, a reset command is issued to initiate another booting process. There are two options in BIOS menu, "Automatically after POST" and "Manually after Entering OS". When "Automatically after POST" is selected, the BIOS automatically stops the watchdog timer after POST (Power-On Self Test) OK. When "Manually after Entering OS" is selected, the user must stop the watchdog timer once booted into the OS. This guarantees the system can always boot into the OS, otherwise another booting process will be initiated. For information about programming watchdog timer, please refer to Appendix A Using WDT & DIO.

To set the watchdog timer for boot in BIOS:

- 1. Press **F2** when the system boots up to enter the BIOS setup utility.
- 2. Go to [Boot] menu.
- 3. Disable or select timeout value for [WDT for Booting] option.
- 4. Once you set a timeout value, the **[WDT Stop Option]** option appears. You can select either "Automatically after POST" or "Manually after Entering OS".
- 5. Once set, press **F10** to save setting and exit.

5 OS Support and Driver Installation

5.1 Operating System Compatibility

Due to Intel's policy, POC-400 series only provide driver support for the following Windows operating systems. For Linux support, please use Linux kernel versions no later than 5.8. The following list contains the operating systems which have been tested in Neousys Technology Inc.

- Microsoft Windows 10 Enterprise LTSC 2019 64-bit
- Microsoft Windows 11 IoT Enterprise 22H2 64-bit
- Ubuntu 20.04.2 LTS** (5.8 kernel)

NOTE

*For Linux system, user may need to manually compile and install the driver for Intel graphics or I225 controller if the driver is not embedded in kernel. You can visit Intel website for further information.

Neousys may remove or update operating system compatibility without prior notice. Please contact us if your operating system of choice is not on the list.

5.2 Driver Installation

The system comes with a "Drivers & Utilities" DVD that offers "one-click" driver installation process. It automatically detects your Windows operating system and installs all necessary drivers for you system with a single click.

5.2.1 Install Drivers Automatically

To install drivers automatically, please refer to the following procedures.

1. Insert the "Drivers & Utilities" DVD into a USB DVD-drive connect to your system. A setup utility launches and the following dialog appears.

2. Click on "Automatic Driver Installation" and the setup utility will automatically detect your Windows operating system and install all necessary drivers. The installation process takes about 6~8 minutes depending on your Windows version. Once driver installation is done, the setup utility reboots your Windows and you may begin using your system.

5.2.2 Install Drivers Manually

You can also manually install each driver for the system. Please note when installing drivers manually, you need to install the drivers in the following sequence mentioned below.

Windows 10 (x64)

The recommended driver installation sequence is

- 1. **Chipset driver** (x:\Driver_Pool\Chipset_ELK\Win_10_64\SetupChipset.exe)
- 2. **Graphics driver** (x:\Driver_Pool\Graphics_ELK\Win_10_64\igxpin.exe)
- 3. **Audio driver** (x:\Driver_Pool\Audio_ALC262\Win_ALL_64\Setup.exe)
- 4. LAN driver (x:\Driver_Pool\GbE_I210_I225_I350_X550\Win_10_64\APPS\PROSETDX\Winx64\DxSetup.exe)
- 5. **TXE driver** (x:\Driver_Pool\TXE_ELK\Win_10_64\SetupME.exe)

5.3 Driver for Watchdog Timer and DIO

Neousys provides a driver package which contains function APIs for WDT function and isolated DIO control function (when MezIO-R12, D230 or D220 is installed). You should install the driver package (WDT_DIO_Setup.exe) in prior to use these functions. Please note that you must install WDT_DIO_Setup_v2.3.1 or later versions.

NOTE

Please install WDT_DIO_Setup_v2.3.1 or later versions.

Windows 10 (x64)

Please execute the driver setup program in the following directory.

x:\ Driver_Pool\WDT_DIO\Win7_8_10_64\WDT_DIO_Setup_v2.3.1(x64).exe

Windows 10 (WOW64)

Please execute the driver setup program in the following directory.

x:\Driver_Pool\WDT_DIO\Win7_8_10_WOW64\WDT_DIO_Setup_v2.3.1(wow64).exe

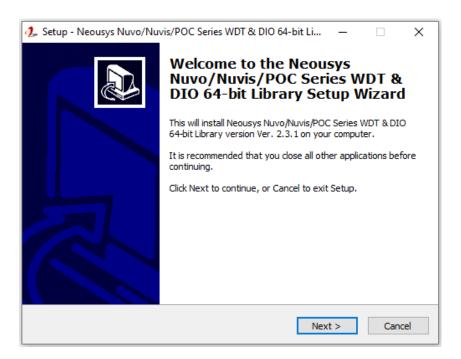
Appendix A Using WDT & DIO

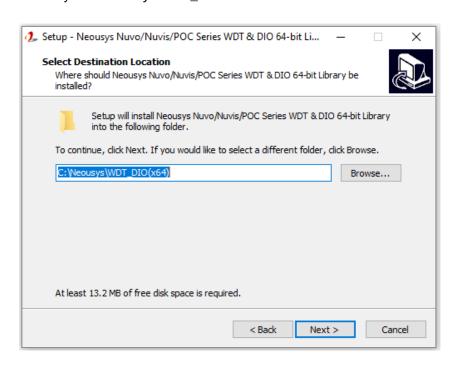
The watchdog timer (WDT) function to ensure reliable system operation. The WDT is a hardware mechanism to reset the system if the watchdog timer is expired. Users can start the WDT and keeping resetting the timer to make sure the system or program is running. Otherwise, the system shall be reset.

In this section, we'll illustrate how to use the function library provided by Neousys to program the WDT functions. Currently, WDT driver library supports Windows 10 x64 and WOW64 platform. For other OS support, please contact Neousys Technology for further information.

Installing WDT_DIO Library

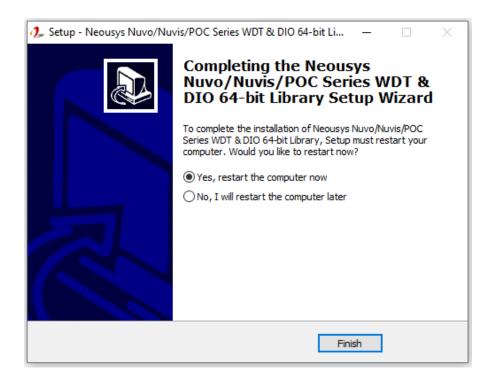
The WDT_DIO function library is delivered in the form of a setup package named WDT_DIO_Setup.exe. In prior to program WDT, you should execute the setup program and install the WDT library. Please use the following WDT_DIO_Setup packages according to your operating systems and application.


- For Windows 10 64-bit OS with 64-bit application (x64 mode), please install WDT_DIO_Setup_v2.3.1(x64).exe or later version.
- For Windows 10 64-bit OS with 32-bit application (WOW64 mode), please install
 WDT_DIO_Setup_v2.3.1(wow64).exe or later version.


WDT and DIO Library Installation

To setup WDT & DIO Library, please follow instructions below.

1. Execute WDT_DIO_Setup.2.3.1.exe. and the following dialog appears.



2. Click "Next >" and specify the directory of installing related files. The default directory is C:\text{Weousys\WDT_DIO}.

3. Once the installation has finished, a dialog will appear to prompt you to reboot the system. The WDT & DIO library will take effect after the system has rebooted.

4. When programming your WDT or DIO program, the related files are located in

Header File:	\Include
Library File:	\Lib
Function Reference:	\Manual
Reference.	
Sample Code:	\Sample\WDT_Demo (Demo for Watchdog Timer)
	\Sample\DIO_Demo (Demo for isolated DIO Control)
	\Sample\COS_Demo (Demo for change-of-state DI)

WDT Function Reference

InitWDT

Syntax	BOOL InitWDT(void);
Description:	Initialize the WDT function. You should always invoke InitWDT() before set or start watchdog timer.
Parameter	None
Return Value	TRUE: Successfully initialized
	FALSE: Failed to initialize
Usage	BOOL bRet = InitWDT()

SetWDT

Syntax	BOOL SetWDT(WORD tick, BYTE unit);	
Description	Set timeout value and unit for watchdog timer. When InitWDT() is invoked, a default timeout value of 255 seconds is assigned.	
Parameter	tick WORD value (1 ~ 65535) to indicate timeout ticks.	
	unit BYTE value (0 or 1) to indicate unit of timeout ticks. 0 : unit is minute 1: unit is second	
Return Value	If value of unit is correct (0 or 1), this function returns TRUE, otherwise FALSE.	
Usage	WORD tick=255; BYTE unit=1; //unit is second. BOOL bRet = SetWDT(tick, unit); //timeout value is 255	
	seconds	

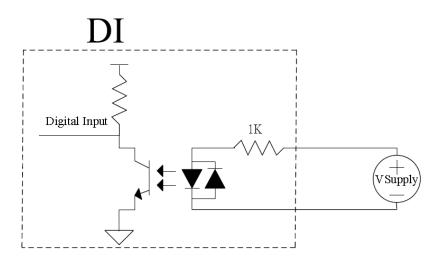
StartWDT

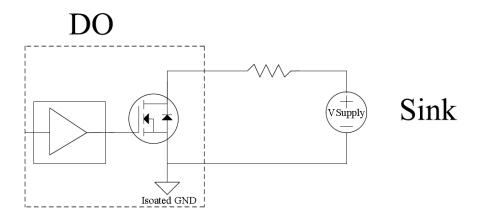
Syntax	BOOL StartWDT(void);
Description	Starts WDT countdown. Once started, the WDT LED indicator will begin blinking. If ResetWDT() or StopWDT is not invoked before WDT countdowns to 0, the WDT expires and the system resets.
Parameter	None
Return Value	If the timeout value is given in correct format (WDT started), this function returns TRUE, otherwise FALSE
Usage	BOOL bRet = StartWDT()

ResetWDT

Syntax	BOOL ResetWDT(void);
Description	Reset the timeout value to the value given by SetWDT().If ResetWDT() or StopWDT is not invoked before WDT countdowns to 0, the WDT expires and the system resets.
Parameter	None
Return Value	Always returns TRUE
Usage	BOOL bRet = ResetWDT()

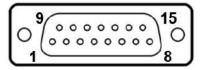
StopWDT


Syntax	BOOL StopWDT(void);
Description	Stops the countdown of WDT. When WDT has stopped, the WDT LED indicator stops blinking.
Parameter	None
Return Value	Always returns TRUE
Usage	BOOL bRet = StopWDT()


Using DIO Function (With MezIO-R12 Installed)

Wiring for DIO

The digital input function of System series is implemented using a photo-coupler with an internally series-connected $1k\Omega$ resistor. You need to provide a voltage to specify the logic high/low state. The input voltage for logic high is $5\sim24V$, and the input voltage for logic low is $0\sim1.5V$.



The digital output function of System series is implemented using Power MOSFET + Analog Device iCoupler® component. The DO channels are configured as NO (normally-open) configuration. When you turn on system, all DO channels have a deterministic state of logic 0 (circuit disconnected from GND return). When logic 1 is specified, MOSFET is activated and GND return path is established. The digital output function on System series supports sinking current connection. The following diagrams are the suggested wiring for DO:

DIO Pin Definition

Pin#	Pin Definition	Pin#	Pin Definition
1	DI_0	9	DI_GND
2	DI_1	10	DI_2
3	DI_GND	11	DI_3
4	DO_GND	12	DO_GND
5	DO_0	13	DO_2
6	DO_1	14	DO_3
7	DO_GND	15	-
8	VDD		

DIO Function Reference

InitDIO

Syntax	BOOL InitDIO(void);	
Description:	Initialize the DIO function. You should always invoke InitDIO()	
	before write/read any DIO port/channel.	
Parameter	None	
Return Value	TRUE: Successfully initialized	
	FALSE: Failed to initialize	
Usage	BOOL bRet = InitWDT()	

DIReadLine

Syntax	BOOL DI	ReadLine(BYTE ch);	
Description:	Read a si	Read a single channel of isolated digital input.	
Parameter	ch		
	BYTE val	ue specifies the DI channel to be read.	
	ch should	be a value of 0 ~ 3.	
Return Value	The status	s (TRUE or FALSE) of the specified DI channel.	
Usage	BYTE	ch=3; //DI channel #3	
	BOOL	DIChValue = DIReadLine(ch); //read DI channel #3	

DIReadPort

Syntax	WORD DIReadPort(void);
Description:	Read the entire isolated digital input port (4 channels).
Parameter	None
Return Value	The status (TRUE or FALSE) of the specified DI channel.
Usage	WORD DIPortValue = DIReadPort ();

DOWriteLine

Syntax	void DOWriteLine(BYTE ch, BOOL value);		
Description:	Write a single channel of isolated digital output.		
	ch		
	BYTE value specifies the DO channel to be written.		
Darameter	ch should be a value of 0 ~ 3.		
Parameter	value		
	BOOL value (TRUE or FALSE) specifies the status of DO		
	channel.		
Return Value	None		
Usage	BYTE ch=3; //DI channel #3		
	BOOL DOChValue=TRUE;		
	DOWriteLine(ch, DOChValue); //write DO channel #3 as		
	TRUE		

DOWritePort

Syntax	void DOWritePort(WORD value);
Description:	Write the entire isolated digital output port (4 channels).
Parameter	value
	WORD value specifies the status of the DO port.
	value should be a value of 0~15.
Return Value	None
Usage	WORD DOPortValue=0x0C; //1100b
	DOWritePort(DOPortValue); //write DO port as 1100b

DOWriteLineChecked

Syntax	void DOWriteLineChecked(BYTE ch, BOOL value);
Description:	Write a single channel of isolated digital output and read-back
	the value of DO register. Note that this function is not returned
	until the DO register is checked and identical to the written
	value.
	ch
	BYTE value specifies the DO channel to be written.
Parameter	ch should be a value of 0 ~ 3.
	value
	BOOL value (TRUE or FALSE) specifies the status of DO
	channel.
Return Value	None
Usage	BYTE ch=3; //DI channel #3
	BOOL DOChValue=TRUE;
	DOWriteLineChecked(ch, DOChValue); //write DO channel #3
	as TRUE

DOWritePortChecked

Syntax	void DOWritePortChecked(WORD value);
Description:	Write the entire isolated digital output port (8 channels) and
	check it has been done. Note that this function is not returned
	until the write value has been checked the same with the
	device registry.
Parameter	value
	WORD value specifies the status of the DO port.
	value should be a value of 0~15.
Return Value	None
Usage	WORD DOPortValue=0x0C; //1100b
	DOWritePortChecked(DOPortValue); //write DO port as 1100b

COS Function Reference

SetupDICOS

Syntax	BOOL SetupDICOS(COS_INT_SETUP *IpSetup, DWORD
	cbSetup);
Description	Setup Digital-Input(DI) Change-of-State(COS) interrupt
	parameters.
Parameter	IpSetup [in]
	A pointer to a COS_INT_SETUP structure that contains the
	COS configuration information for the DI device.
	This data structure contains the following variables:
	portMask
	WORD value specifies the interrupt mask for corresponding
	channel(s).
	edgeMode
	WORD value specifies that interrupt is generated when level
	change (set to 0) or on rising/falling edge (set to 1) for the
	corresponding channel(s).
	edgeType
	WORD value specifies that interrupt is generated on rising
	edge (set to 0) or falling (set to 1) edge for corresponding
	channel(s). This value is neglected if edgeMode is set to 0 for
	the corresponding channel(s).
	cbSetup [in]
	The length of the structure, in bytes. The caller must set this
	member to size of (COS_INT_SETUP).
Return Value	TRUE if setup successes
	FALSE if setup failed
Usage	COS_INT_SETUP setup;
	memset(&setup, 0, sizeof(setup));
	setup.portMask = 0x0f; // enable ch.0~3
	setup.edgeMode = 0; // level
	setup.edgeType = 0x00; // Lo/Hi
	BOOL bRet = SetupDICOS(&setup, sizeof(setup));

RegisterCallbackDICOS

Syntax	BOOL RegisterCallbackDICOS(COS_INT_CALLBACK
	callback);
Description:	Registers a callback function, which is called when the DICOS
	interrupt occurred.
Parameter	callback [in]
	Specifies the callback function. The prototype for this function
	is descripted as follow.
	voidstdcall callback_func(COS_INT_CALLBACK_ARG*
	arg);
Return Value	TRUE if setup successes,
Return Value	TRUE if setup successes, FALSE if setup failed.
Return Value Usage	·
	FALSE if setup failed.
	FALSE if setup failed. voidstdcall callback_func(COS_INT_CALLBACK_ARG*
	FALSE if setup failed. voidstdcall callback_func(COS_INT_CALLBACK_ARG* arg)
	FALSE if setup failed. voidstdcall callback_func(COS_INT_CALLBACK_ARG* arg) {
	FALSE if setup failed. voidstdcall callback_func(COS_INT_CALLBACK_ARG* arg) { printf("data=0x%02x, flag=0x%02x, seq=%02d\n",

StartDICOS

Syntax	BOOL StartDICOS(void);
Description	Start DI Change-of-State interrupt
Parameter	None
Return Value	TRUE if start procedure successes
	FALSE if start procedure failed
Usage	BOOL bRet = StartDICOS();

StopDICOS

Syntax	BOOL StopDICOS(void);
Description	Stop DI Change-of-State interrupt
Parameter	None
Return Value	TRUE if stop procedure successes
	FALSE if stop procedure failed
Usage	BOOL bRet = StopDICOS();

DI COS Example

```
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include "WDT_DIO.h"
            define a Change-of-State Interrupt callback function
void __stdcall callback_function(COS_INT_CALLBACK_ARG* arg)
{
    printf("data=0x%02x, flag=0x%02x, seq=%02d\n",
    arg->portData, arg->intrFlag, arg->intrSeq);
}
int main(int argc, char* argv[])
{
 //Step 1, initialize DIO library by invoking InitDIO()
    if (! InitDIO())
    {
         printf("InitDIO --> FAILED\n");
         return -1;
    }
    printf("InitDIO --> PASSED\n");
```

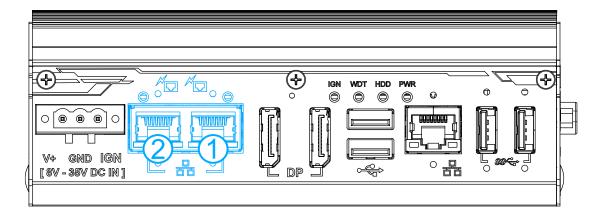
//Step 2, setup Change-of-State Interrupt mask and level/edge mode
COS_INT_SETUP setup;


```
memset(&setup, 0, sizeof(setup));
    setup.portMask = 0x0f;
                                 // 00001111b, enable ch.0~3
    setup.edgeMode = 0x00; // generate interrupt on level change
    setup.edgeType = 0x00;
                                 // rising/falling edge, only effective when
edgeMode = 1
    if (! SetupDICOS(&setup, sizeof(setup)))
    {
         printf("SetupDICOS --> FAILED\n");
         return -2;
    }
    printf("SetupDICOS --> PASSED\n");
 //Step 3, register the callback function
    if (! RegisterCallbackDICOS(callback_function))
    {
         printf("RegisterCallbackDICOS --> FAILED\n");
         return -3;
    }
    printf("RegisterCallbackDICOS --> PASSED\n");
 //Step 4, start the DI Change-of-State Interrupt
    if (! StartDICOS())
    {
         printf("StartDICOS --> FAILED\n");
         return -4;
    }
    printf("StartDICOS --> PASSED\n");
    printf("\npress any key to stop...\n");
    system("pause >nul");
 //Step 5, stop the DI Change-of-State Interrupt operation
    if (! StopDICOS())
    {
         printf("StopDICOS --> FAILED\n");
         return -5;
```



```
}
printf("StopDICOS --> PASSED\n");
printf("\npress any key to exit...\n");
system("pause >nul");
return 0;
}
```

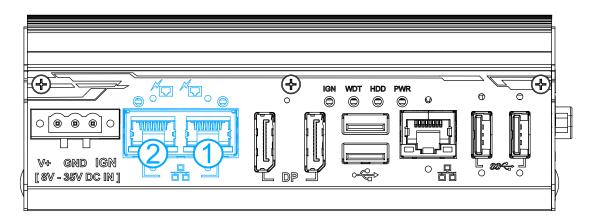

Appendix B PoE On/ Off Control


The POC-410 system offers two 802.3at PoE+ ports with a unique feature to allow users manually turn on or off the power supply of each PoE port. This can be function can be useful in power device (PD) fault-recovery or power reset.

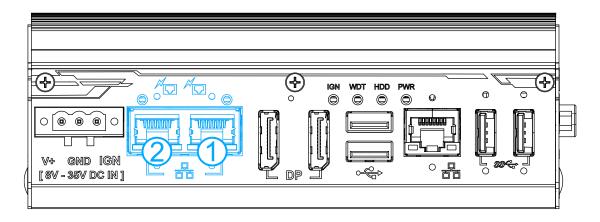
The function APIs are encapsulated in Neousys WDT_DIO driver package. Please follow the instructions in <u>Appendix A Watchdog Timer & Isolated DIO</u> to install the driver package prior to programming PoE on/off control function

PoE On/ Off Control Function Reference

GetStatusPoEPort


Syntax	BYTE GetStatusPoEPort (Byte port);
Description	Get current on/off status of designated PoE port.
Parameter	port
	BYTE value specifies the index of PoE port. Please refer to the following illustration, <i>port</i> should be a value of 1 ~ 2.
Return Value	BYTE value indicating PoE on/off status
	0 if port is disabled (off)
	1 if port is enabled (on)
Usage	BYTE bEnabled = GetStatusPoEPort (1); //Get on/off status of
	PoE Port#1

EnablePoEPort


Syntax	BOOL EnablePoEPort (BYTE port);
Description	Turn on PoE power of designated PoE port.
Parameter	port
	BYTE value specifies the index of PoE port. Please refer to the following illustration, <i>port</i> should be a value of 1 ~ 2
Return Value	TRUE if enabled success
	FALSE if fail to enable.
Usage	BOOL bRet = EnablePoEPort (1); //Turn on PoE Port#1

DisablePoEPort

Syntax	BOOL DisablePoEPort (BYTE port);
Description	Turn off PoE power of designated PoE port
Parameter	port
	BYTE value specifies the index of PoE port. Please refer to the following illustration, <i>port</i> should be a value of 1 ~ 2
Return Value	TRUE if disabled success
	FALSE if fail to disable
Usage	BOOL bRet = DisablePoEPort (1); //Turn off PoE Port#1

